A ciência vai ao parque
Os projetistas das montanhas-russas usam princípios descobertos há pelo menos 300 anos para criar os mais vertiginosos percursos, deixando os passageiros até de cabeça para baixo, a 100 quilômetros por hora
A. C. Taborda, com Katia Zero, de Washington
Com uma mistura de entusiasmo e apreensão, os passageiros do pequeno vagão vêem o alto dos trilhos se aproximar lentamente. Atingindo o cume, começa uma arrepiante sucessão de abismos abruptos, curvas inesperadas e subidas de tirar o fôlego. Tudo isso acontece em cerca de dois minutos numa montanha-russa –embora para os passageiros pareça uma eternidade. O objetivo dos projetistas, naturalmente, é criar o trajeto mais emocionante, de modo a proporcionar o maior número possível de sobressaltos por metro de viagem, sem o menor risco — pois nisso está toda a graça do brinquedo. A velocidade dos carros parece muito maior que a real, pela proximidade dos trilhos e os apavorantes loops não passam de bem planejadas estruturas, tudo graças ao concurso das leis da Física.
Começa o passeio e o pequeno vagão é lentamente puxado até o ponto mais alto da montanha-russa. Quanto mais alto for esse ponto, maior será a energia do carro — no caso, trata-se da energia potencial, que ao se transformar em energia cinética durante a descida aumentará progressivamente a velocidade do vagão. Qualquer objeto levantando do solo contém energia potencial, criada pela força da gravidade. Mas a corda de um relógio por exemplo, ou um pedaço de elástico esticado também possuem energia potencial armazenada. Em Física clássica, energia potencial e energia cinética são as duas faces da energia mecânica.
A palavra energia foi usada pela primeira vez num texto científico em 1807 pela Royal Society inglesa, por sugestão do médico e físico Thomas Young (1773-1829). Outra de suas idéias brilhantes, mas que permaneceu despercebida nos arquivos da ciência, foi a definição de energia como a capacidade de realizar trabalho, ou seja, deslocar determinada massa por uma distância. Essa definição é o ponto-chave para a compreensão do conceito — e também para se entender os segredos da montanha-russa. Depois de ultrapassar o topo do ponto de partida, o vagão escorrega em desabalada viagem ladeira abaixo sem a ajuda de motores ou máquinas, como um carrinho de rolimã ou um skate.
Durante o trajeto, a energia mecânica do vagão é também utilizada de forma inteligente — ela serve para mover uma série de geradores que fornecem eletricidade às lâmpadas que iluminam a montanha-russa. A energia excedente é canalizada para os acumuladores (baterias), onde é convertida em energia química. Esta poderá ser novamente transformada em eletricidade, sempre que necessário. Alguém poderia pensar que assim se obtém energia de graça. Mas, como dizia Lord Keynes em relação aos fatos da economia, nada é gratuito no Universo — a energia necessária para o guincho puxar o vagão até o início do percurso é muito superior à energia gerada na descida. A diferença transformou-se em calor.
O mesmo acontece com uma bola de pingue-pongue: ao ser largada sobre uma superfície qualquer, voltará quase à altura original e irá quicando cada vez mais até parar na superfície. Se não houvesse perdas, a bola voltaria sempre à altura inicial, mas a energia se dissipa sob a forma de calor. Uma das mais importantes propriedades da energia — com lugar cativo nas montanhas-russas — é o intercâmbio entre suas várias formas. Os físicos não conseguem imaginar uma exceção sequer à regra de que qualquer forma de energia pode ser convertida em outra. No caso da montanha-russa, o movimento das rodas gera eletricidade. São elas ainda as responsáveis pela velocidade desenvolvida.
A única força capaz de deter o trem é o atrito. Na ausência total de atrito, os passageiros embarcariam numa viagem sem fim, subindo e descendo os obstáculos incansavelmente (desde, é claro, que tenham sido levados até o início do trajeto). Por outro lado, se o atrito fosse máximo, o trem não sairia do lugar. As rodas, embora consigam diminuir grande parte do efeito do atrito, não chegam a eliminá-lo. Por esse motivo, todos os veículos de detêm após certo tempo. Descobrir o mistério que mantém os corpos em movimento sempre foi um dos maiores desafios para a ciência. Suponha-se que, cessada a força, cessasse também o movimento.
Mas, em 1638, o físico italiano Galileu Galilei deduziu que a suposição era falsa. Quatro anos mais tarde nasceria o homem que resolveria de vez a questão — o inglês Isaac Newton (1642-1727). A lei da Inércia, ou Primeira Lei de Newton, diz que um corpo permanecerá no estado em que estiver até que alguém venha dar-lhe um impulso. Mas o que aconteceria com o corpo se, no lugar do impulso, fosse empurrado continuamente? Essa força produziria um aumento progressivo na sua velocidade. É a aceleração, descrita na Segunda Lei de Newton. No parque de diversões, em queda livre, o vagão sofre a ação da força da gravidade, portanto acelera. No entanto, não cai na vertical, mas percorre um longo plano inclinado, disfarçado pelos vales e picos do trajeto.
Eliminando-se as curvas para a direita ou para a esquerda numa montanha-russa, seu perfil poderia ser traçado dentro de um triângulo retângulo, apoiado no seu maior cateto; o cateto oposto seria o ponto de partida. Dali em diante, encontraria uma série de ondulações cada vez menores. Todas as curvas que servem para fazer o vagão voltar ao ponto de partida têm um desenho circular. Já os vales e picos seguem um trajeto parabólico, assim como a imagem espelhada do movimento de uma bola que cai da borda de uma mesa.
“A vantagem da trajetória parabólica”, explica o físico Ernst Hamburger, da Universidade de São Paulo, “é que o componente horizontal do movimento não é afetado; assim, toda energia é utilizada para vencer as ladeiras do percurso e não para tocar o vagão adiante. “A velocidade obtida na descida é usada para superar a próxima subida. E é tão elevada a velocidade desses carrinhos que, antes ainda da primeira curva, os freios precisam entrar em ação. Eles nada mais são que pontos de grande atrito e, numa montanha-russa moderna, estão permanentemente acionados — pois, na posição de repouso, freiam os vagões.
Nos primeiros modelos, do começo do século, um funcionário era encarregado de frear o carro quando ele se aproximava de pontos predeterminados. “Nos trechos de alta velocidade dos modelos atuais, um mecanismo desengata os freios; havendo algum problema, automaticamente o vagão é brecado ao voltarem os freios à posição desligada”, explica o engenheiro Laerte de Souza, responsável pelos equipamentos do Playcenter, em São Paulo. Nesse instante, a pastilha do freio que está junto aos trilhos morde uma lâmina de metal que sai da lateral dos vagões, aplicando o atrito máximo para impedir o movimento. A energia mecânica do vagão é assim transformada em calor.
Boa parte das inovações adotadas nos últimos anos nos parques de diversões se deve não à Física ou à Matemática, mas aos materiais empregados. Antigamente, as montanhas-russas eram de madeira. Hoje são de aço e necessitam muito menos manutenção. Importante também é a nova configuração dos trilhos – são tubulares; um par de rodas como que abraça os tubos de cada lado, permitindo movimentos muito mais bruscos em alta velocidade. Os novos trilhos liberaram a imaginação dos projetistas. Munidos de computadores, eles conseguem criar os mais extravagantes projetos. “Com o computador é possível saber o que vai acontecer, antes mesmo de desenhar o percurso no papel”, festeja Bill Cobb, um projetista de Dallas, nos Estados Unidos.
Outro grande aliado dos engenheiros é o acelerômetro, um pequeno instrumento que, levado na mão do passageiro, permite medir a intensidade e a direção das forças em diversos pontos do percurso. As leituras são feitas em g, que representa o valor da aceleração da gravidade. Os pilotos de jatos, quando obrigados a manobras mais arriscadas, conseguem suportar até 11 g – onze vezes a força da gravidade — antes de perder a consciência. Os acelerômetros são bastante usados pelos desenhistas que se dedicam a renovar montanhas-russas antigas, a fim de torná-las mais seguras.
Naqueles modelos, é o comum os acelerômetros indicarem valores até mesmo negativos em certos pontos, principalmente nas pequenas lombadas. Isso que dizer que o passageiro perigosamente, perde o contato com o assento. As lombadas são então corrigidas para até 0,3 g — três décimos da gravidade. Com isso o passageiro se sentirá mais leve, mas não sairá da cadeira. “A tecnologia tornou possível submeter o passageiro às mais incríveis acrobacias, consideradas impossíveis há dez anos”, afirma Randy Geisler, presidente da Associação dos Entusiastas de Montanhas-Russas, com sede em Chicago, ouvido por SUPERINTERESSANTE nos Estados Unidos.
O motivo de tanto arrebatamento é um novo traçado: o loop, que permite ao carrinho ficar literalmente de cabeça para baixo. Fazer um trem viajar de ponta-cabeça era uma velha aspiração dos projetistas. A primeira tentativa ocorreu no século passado, em Coney Island, Nova York, no ano de 1887. Mas o que parecia ser a escolha mais lógica — o círculo de 360 graus — não funcionou. O problema é que, quando o vagão entra em alta velocidade num círculo perfeito, a subida é muito brusca, gerando uma força centrífuga de tal intensidade que pressiona os passageiros violentamente contra o assento. No topo ocorre o inverso: o carro desacelera subitamente e se a velocidade cair abaixo de certo limite, a gravidade irá puxar os passageiros de seus assentos, quando estiverem de cabeça para baixo.
A solução matemática para esses inconvenientes já existia, porém, desde o longínquo ano de 1744. Uma curva especial, chamada clotóide, ou espiral de Cornu, havia sido descoberta então por um dos mais prolíficos e geniais matemáticos de todos os tempos, o suiço Leonhard Euler (1707-1783). Mas só em 1977 os projetistas se deram conta de que a curva de Euler era a solução perfeita — o seu raio variável controla a velocidade do vagão, de acordo com a Lei da Conservação do Momento Angular. Esta se manifesta, por exemplo, quando se gira uma pequena pedra na ponta de um barbante, de modo a fazê-la enrolar no dedo indicador. À medida que diminui o barbante, aumenta a velocidade.
Assim, o vagão entrando num loop em forma de gota move-se a uma velocidade inferior à que teria num círculo, diminuindo também a força centrífuga sobre os passageiros. No topo, o raio da curva é bem menor. com isso, o vagão gira mais rápido do que num círculo. Cria-se uma força centrífuga mais elevada, capaz de superar a atração da gravidade, o que mantém os passageiros seguros nos assentos. Essa inovação permitiu loops bastantes altos, já que os carros não perdem velocidade. O maior loop do mundo, com 40 metros de altura, é o da montanha-russa chamada Shock Wave (Onda de Choque), em Illinois, Estados Unidos.
A Shock Wave é também a mais alta e mais veloz montanha-russa do mundo: o ponto inicial do passeio está a 52 metros de altura (o equivalente a 17 andares); logo em seguida vem uma queda de 47 metros, quando a velocidade chega a 113 quilômetros por hora. O grande loop é apenas o início de uma série de enlouquecidas manobras que duram 2 minutos e 20 segundos. No total, os passageiros ficam sete vezes de cabeça para baixo. “É uma loucura”, orgulha-se seu criador, Ronald Toomer, ex-desenhista de foguetes, responsável também por uma série de inovações na construção das montanhas-russas americanas.
Pelo visto, não é um brinquedo para qualquer um. Paul Ruben, um americano fanático por montanhas-russas, a ponto de editar uma revista sobre o assunto, confessa que não suportou mais de cinco voltas seguidas na Shock Wave. “Depois, comecei a sentir tudo estranho por dentro”, disse à SUPERINTERESSANTE. O único loop existente no Brasil, o do Tivoli Park, no Rio de Janeiro, a rigor é um parafuso: não gira no mesmo plano, mas se desenvolve como um saca-rolhas. Sua altura é inferior a 10 metros e a velocidade máxima é de 80 quilômetros por hora. A montanha-russa do Playcenter de São Paulo tem 12 metros de altura e alcança 70 quilômetros por hora.
Os especialistas, como Toomer e Ruben, apontam uma diferença fundamental entre as montanhas-russa tradicionais e as que possuem um loop: nas primeiras, pequenos carrinhos transportam sucessivamente até quatro passageiros; já no segundo tipo, um só comboio leva té 28 passageiros. Segundo os físicos, não é preciso maior massa para vencer o loop. Mas os projetistas usam a massa do comboio, por exemplo, para ajudar a vencer o atrito de uma roda defeituosa e completar a volta. Do mesmo modo, nem todas as modificações baseadas na Física garantem total segurança – o cinto e outros equipamentos similares devem ser usados, ainda que a própria força centrífuga mantenha o passageiro firmemente grudado no assento.
A Terceira Lei de Newton, também conhecida como a Lei da Ação e Reação, pode também explicar que tipo de forças atuam durante o loop. Ela diz que, para toda a força exercida sobre um corpo, surge outra igual, em sentido contrário. No interior de um parafuso, como o do Tivoli Park, o passageiro sofre uma aceleração centrífuga de 2 g, ou seja, seu peso dobra. Segundo a Terceira Lei de Newton, se os trilhos não segurassem o vagão, ele sairia voando pelo espaço. A reação (centrípeta) de apoio do trilho sobre o carrinho equivale à força (centrífuga) com que o carrinho comprime o trilho.
As montanhas-russas são tão científicas que muitas escolas levam os alunos aos parques de diversões para uma verdadeira aula experimental de Física. Adepto dessa prática é o físico Moacyr Ribeiro do Valle Filho, da Universidade de São Paulo. “As relações da Física estão presentes em todos os momentos da vida”, teoriza ele. “Assim, em vez de aplicar um exemplo para cada fenômeno, resolvi estudar todos os fenômenos presentes num determinado exemplo. Moacyr Ribeiro, que justamente prepara uma tese de doutorado sobre o uso do parque de diversões nas aulas de Física, tem um ponto de vista muito claro sobre o que faz a graça do brinquedo: “O apoio visual é indispensável, já que todas as forças envolvidas somente variam a pressão do passageiro contra o assento. Um cego numa montanha-russa não acharia o passeio muito extraordinário”.
Para saber mais:
Disney World, escola risonha e franca
(SUPER número 4, ano 6)
Uma história só de altos
As estruturas de madeira, cobertas de gelo e neve, que os russos do século XVII usavam para deslizar no inverno, são o primeiro registro que se tem de montanha artificial para divertimento do público. As maiores e mais populares eram as de São Petersburgo, na época a capital do império russo, que tinham adeptos tanto entre o povo quanto entre a aristocracia. Em 1804, os franceses copiaram a idéia, com algumas modificações: o gelo foi eliminado e as lâminas do tobogã substituídas por rodinhas. A primeira a funcionar em Paris foi chamada apropriadamente montagne russe.
Em 1884, o inventor americano LaMarcus A. Thompson melhorou a versão francesa fazendo os carrinhos deslizarem por uma superfície ondulada. Sua montanha alcançava quase 10 quilômetros por hora na descida – um espanto, na época. Os passageiros tinham de saltar para que os atendentes empurrassem o carrinho até o topo da segunda inclinação, onde os passageiros tornavam a embarcar. A partir de 1900 surgiram as montanhas-russas mais modernas, aproveitando a própria energia acumulada na subida.
Em seguida, veio a forma fechada, para deixar os passageiros no mesmo ponto de onde partiram, e todas as variações de percurso, como o “8”, por exemplo. Foi o projetista americano Ronald Toomer quem, em 1975, conseguiu pela primeira vez colocar um carrinho de cabeça para baixo, usando um grande parafuso. Na hora do teste inicial ele ficou só olhando já que odeia os rápidos movimentos das montanhas-russas e outros equipamentos dos parques de diversões: “Passo mal”, justifica-se ele.