A Segunda Guerra acelerou as pesquisas sobre a estrutura dos átomos. E as melhores mentes da época usaram esses conhecimentos para criar a arma mais destruidora já vista.
Texto: Eduardo Szklarz | Edição de arte: Estúdio Nono | Design: Andy Faria
A contagem regressiva começou quando ainda estava escuro. Fumando um cigarro atrás do outro, o físico americano Robert Oppenheimer respirou fundo no bunker onde os cientistas monitoravam o primeiro teste nuclear da história.
A 9 km dali, no topo de uma torre de aço de 30 m de altura, uma bomba de plutônio estava a ponto de explodir. “A Engenhoca”, como a chamavam, era um emaranhado de fios e parafusos que destoava da árida e serena paisagem do Novo México, EUA. Oppenheimer deu mais algumas baforadas até que, naquele 16 de julho de 1945, a contagem regressiva finalmente chegou a zero.
Às 5h29min45s, um clarão iluminou as montanhas com uma energia equivalente a 20 mil toneladas de TNT. O rugido da onda de choque estremeceu o bunker e retumbou pelo deserto, onde seria sentido a 160 km de distância. O calor do ponto zero fez a torre de aço evaporar e calcinou a areia num raio de 700 metros, transformando-a num lençol de vidro. Os cientistas avistaram com terror a imensa bola de fogo no horizonte, que exalava uma nuvem em forma de cogumelo de 12 km de altura.
Petrificado, Oppenheimer murmurou um verso do Bhagavad-Gita, texto sagrado do hinduísmo: “Transformei-me na morte. A destruidora de mundos”. Dias depois, a arma mais letal já construída seria usada contra Hiroshima e Nagasaki, no Japão, causando uma devastação sem precedentes.
Física quântica
A “Engenhoca” não surgiu de repente. Ela foi fruto de descobertas científicas que, nos anos 1920 e 30, provaram que a bomba nuclear era possível. As primeiras pistas vieram em 1900, quando o alemão Max Planck lançou as bases da teoria quântica – que descreve fenômenos em escalas diminutas, como a atômica. Planck sugeriu que a luz emitida por materiais aquecidos podia ser medida em “pacotes de energia”. E chamou cada pacote de quantum.
Em 1905, Einstein aprimorou a teoria de Planck ao mostrar que certos materiais emitem elétrons quando atingidos por radiações eletromagnéticas (como a luz). Em 1911, o neozelandês Ernest Rutherford deu mais um passo ao provar a existência do núcleo atômico, onde os prótons (partículas positivas) são circundados pelos elétrons (negativos). E em 1913 o dinamarquês Niels Bohr juntou tudo isso num modelo ainda mais preciso, propondo que os elétrons giram ao redor do núcleo em órbitas com níveis de energia quantizados, ou seja, múltiplos de um quantum.
Daí a coisa deslanchou. Nos anos 1920, o físico Max Born transformou a Universidade de Göttingen (Alemanha) no templo da mecânica quântica, com a colaboração de cientistas europeus como Werner Heisenberg, Erwin Schrödinger e Paul Dirac. Entre eles havia também um americano: Robert Oppenheimer, aluno de doutorado de Born. Oppenheimer recebeu seu PhD com louvor em Göttingen e voltou aos EUA em 1929 para lecionar física na Universidade da Califórnia, em Berkeley. Lá ele descobriu sua vocação para a liderança – e seu carisma entre os alunos.
“Oppie, como ficou conhecido, logo atingiu o status de cult”, diz o escritor Paul Strathern no livro Oppenheimer e a Bomba Atômica em 90 Minutos. “Alto e magro como um graveto, Oppie escrevia artigos com Dirac, discutia teoria quântica com Bohr, falava oito idiomas e escrevia poesia de vanguarda.” Com a ascensão do nazismo, em 1933, Oppie financiou organizações antifascistas e mergulhou na política de esquerda influenciado por uma namorada, embora não tenha se filiado ao Partido Comunista. E abriu as portas para gênios da teoria quântica que chegavam aos EUA fugindo de Hitler e Mussolini.
Entre esses gênios estavam o italiano Enrico Fermi e o húngaro Leo Szilard – que seriam fundamentais para a construção da bomba atômica. Mas ainda faltava uma descoberta para torná-la viável.
Fissão nuclear
Quando você quebra o núcleo de um átomo em duas partes, ele libera uma dose cavalar de energia. Einstein tinha previsto isso em 1905 com a fórmula E = mc2, em que E é energia, m é massa e c é a velocidade da luz. Como a luz viaja a quase 300 mil km/s, mesmo uma pequena massa contém uma quantidade de energia abismal. A hipótese de Einstein ficou no papel por quase três décadas. Em 1932, porém, o inglês James Chadwick descobriu o nêutron, a partícula neutra do núcleo atômico. E a teoria começou a virar realidade.
Em Berlim, o químico alemão Otto Hahn e sua colega austríaca Lise Meitner usaram nêutrons para bombardear átomos de urânio – o elemento mais pesado da natureza, com 92 prótons no núcleo. O objetivo era produzir elementos ainda mais pesados. Meitner teve que fugir para a Suécia em 1938 por ser judia, mas Hahn continuou a pesquisa e a manteve informada dos resultados. E veio a surpresa: ao analisar o urânio bombardeado, Hahn e o químico Fritz Strassmann encontraram partículas de bário (um elemento mais leve).
Hahn não compreendeu o que havia acontecido, mas Meitner matou a charada: ao ser bombardeado por nêutrons, o núcleo do urânio se dividira em dois, produzindo bário e uma enorme quantidade de energia. Tal como Einstein tinha previsto. Ou seja, Hahn e Meitner haviam descoberto a “fissão nuclear” (nome dado pelo físico Otto Frisch, sobrinho de Meitner). Sem perceber, eles acabavam de abrir a porta para a bomba atômica. E o pior: graças aos artigos publicados sobre a fissão em 1939, o Terceiro Reich agora sabia como obtê-la.
Mesmo assim, o mundo científico não achava que havia motivo para alarme. Bohr, por exemplo, considerava remota a possibilidade de enriquecer urânio em larga escala. Por um motivo simples: como o U-235 (o urânio físsil) está presente em apenas 0,7% do urânio natural, seria extremamente difícil e custoso obtê-lo em quantidade suficiente para uma grande explosão. Isso porque o urânio-238, o mais comum na natureza, é estável demais para reagir. Apenas o húngaro Leo Szilard farejou o perigo iminente. “Para evitar que os alemães produzissem a bomba, Szilard propôs aos colegas em fevereiro de 1939 que mantivessem as pesquisas com o urânio em segredo”, diz o historiador dinamarquês Helge Kragh no livro Quantum Generations.
A sugestão foi recebida com ceticismo. Assim, em agosto de 1939, Szilard e Einstein escreveram uma carta secreta ao presidente Roosevelt, advertindo que “bombas extremamente poderosas de um novo tipo” poderiam ser construídas em breve. A entrega da carta foi adiada por causa do início da Segunda Guerra, em 1º de setembro. Roosevelt só a recebeu em outubro – e deu sinal verde para o ultrassecreto Projeto Manhattan. O objetivo: construir a bomba atômica americana antes que os nazistas fizessem a deles.
A iniciativa começou timidamente. O governo dos EUA criou a Comissão Consultiva do Urânio (codinome S-1) para testar a fissão em larga escala, e destinou US$ 6 mil (cerca de US$ 100 mil atuais) para que Fermi e Szilard comprassem material físsil. O programa se expandiu após o ataque japonês a Pearl Harbor, em 1941, que marcou a entrada dos EUA na guerra. Fermi construiu então um reator nuclear numa quadra de squash na Universidade de Chicago. O risco era enorme: qualquer erro podia gerar uma grande explosão. “Felizmente para os inocentes cidadãos de Chicago, Fermi sabia o que estava fazendo. Dedos cruzados e, em 2 de dezembro de 1942, o primeiro reator nuclear do mundo produziu a primeira reação nuclear controlada e autossustentada”, diz Strathern. A partir daí, o Projeto Manhattan entrou numa nova fase.