Revista em casa por apenas R$ 9,90/mês
Continua após publicidade

Cygnus X-1, o primeiro buraco negro encontrado, é maior que se pensava

Novas evidências indicam que o objeto tem 21 vezes a massa do Sol e está a 7.200 anos-luz de nós. Até então, falava-se em 15 massas solares.

Por Bruno Vaiano Materia seguir SEGUIR Materia seguir SEGUINDO
Atualizado em 19 fev 2021, 17h55 - Publicado em 19 fev 2021, 17h50

Era uma vez uma estrela na constelação de Cisne (Cygnus, ou Cruzeiro do Norte) que na verdade não era uma estrela: eram duas.

Até aí, tudo bem. Parece exótico, mas não é tanto assim. Sistemas estelares duplos (como o fictício Tatooine, de Star Wars) ou triplos são familiares aos astrônomos. Como ficam muito distantes, parecem uma estrela só vistos da Terra, a olho nu. Mesmo Alpha Centauri – que é o sistema solar mais próximo de nós, a “apenas” 4,3 anos-luz de distância – consiste em três estrelas unidas gravitacionalmente.

Acontece que essa estrela do Cisne, localizada a 6.100 anos-luz da Terra, é um pouco estranha por outras razões. Ela emite raios X, e por isso foi denominada Cygnus X-1. Raios X são ondas eletromagnéticas essencialmente iguais à luz que podemos ver com os olhos, mas de comprimento bem menor e energia mais alta. Eles só são produzidos por fenômenos cósmicos bastante intensos. Nada que faça parte do currículo de uma estrela comum.

Cygnus X-1, inclusive, só pôde ser observada pela primeira vez em 1964, graças a um par de contadores Geiger (detectores de radiação) instalados em um foguete. Nossa atmosfera filtra o grosso dos raios X, então observatórios instalados na superfície da Terra não conseguem captá-los.

Ao longo das décadas de 1960 e 1970, as descobertas se acumularam. Os astrônomos puderam determinar que esse estranho sistema duplo consistia em uma estrela gigante azul, com massa algo entre 20 e 40 vezes maior que o Sol, fazendo dupla com um objeto compacto com 14,8 massas solares – o responsável por emitir os raios X. Também perceberam que o objeto compacto era realmente compacto: bem menor que a Terra.

Continua após a publicidade

Muitas hipóteses para explicar essa anomalia foram descartadas, e por volta de 1973 a maior parte da comunidade astronômica concordava que esse troço não era uma estrela, nem mesmo uma estrela de nêutrons (que já é algo um bocado denso). Era uma ex-estrela, que tinha 60 massas solares e entrou em colapso gravitacional completo após sua morte. Um buraco negro.

Cygnus X-1 virou item da cultura pop. Era o primeiro buraco negro encontrado, décadas depois desses objetos serem previstos na teoria. Em 1977, a banda de prog rock nerd Rush cantou sua morte: “Seis estrelas do Cruzeiro do Norte. / De luto pela morte de sua irmã. / Em um brilho final de glória. / Jamais adornará a noite de novo”. Stephen Hawking apostou com Kip Thorne em 1974 que o dito-cujo não era um buraco negro, e precisou pagar em 1990, diante de evidências muito sólidas.

Como a gigante azul e o buraco negro estão fisicamente muito próximos – um completa uma volta em torno do outro cada 5,5 dias –, Cygnus X-1 puxa para si uma boa quantidade de material que exala da superfície externa de sua companheira estelar (o chamado vento estelar). Esse material entra na órbita do objeto e gira a uma velocidade altíssima, o que gera uma dose cavalar de calor e radiação e explica os raios X.

Continua após a publicidade

A nova observação

Agora, um grupo de astrônomos de vários países usou o enorme Very Long Baseline Array – um conjunto de dez telescópios espalhados pelos EUA que operam em sincronia – para realizar um novo cálculo da massa de Cygnus X-1. A nova cifra são 21 massas solares – 6 massas solares a mais que a estimativa canônica.

“Isso mostra que o buraco negro desse binário é o mais gordinho dos conhecidos em sistemas binários”, resume o físico Juliano Neves, da Universidade Federal do ABC. Pode não soar muito relevante falando assim, mas trata-se de um reajuste no valor da massa equivalente a meia dúzia de sóis iguais ao nosso. E o nosso Sol, sozinho, é tão grande que corresponde a mais de 99% da massa de todo o Sistema Solar. Ou seja: é muito coisa. 

Uma novidade no método empregado é que a rede de telescópios utilizada detecta ondas no comprimento equivalente ao utilizado pelas estações de rádio aqui na Terra. Esse é um outro tipo de radiação eletromagnética, com menos energia (e não mais) que a luz que podemos ver com os olhos. Bem diferente dos raios X, que estão na outra ponta do espectro, a mais energética.

Continua após a publicidade

A distância também mudou

Também houve um não tão ligeiro ajuste na distância: aparentemente, Cygnus X-1 está a 7.200 anos-luz da Terra, contra os 6.100 da estimativa original. Vale dizer que o novo cálculo da massa só foi possível porque antes veio o cálculo da distância.

Para entender o método utilizado determinar a distância de um objeto cósmico a partir da luz que ele emite, comece erguendo um dedo na frente dos seus olhos. Agora feche um olho e depois o outro olho, sem mover o dedo. Você vai perceber que o dedo aparenta mudar de posição. Na verdade, não mudou: é que os olhos estão em lugares diferentes da sua cabeça. Se você esticar o braço para afastar o dedo e repetir o processo, essa distorção será menor, porque o dedo está mais distante.

A Terra gira em torno do Sol. Quando nosso planeta está em lados opostos da estrela, ele sofre do mesmo fenômeno: é como se a imagem feita pelo telescópio do lado “de cá” do Sol equivalesse a um olho, e a imagem feita do lado “de lá”, ao outro olho (não que exista lado de cá ou lado de lá, é claro. É só uma figura de linguagem. O Sol é redondo, não tem lados). Quanto mais o objeto se deslocar na mudança de perspectiva, mais próximo ele está de nós. Do mesmo jeito que o dedo mais próximo parece mudar mais de posição.

Continua após a publicidade

O que vem agora?

Esses novos dados sobre Cygnus X-1, caso se confirmem, tem potencial para mudar a maneira como teorizamos o processo de formação de buracos negros – e a vida das estrelas que dão origem a eles.

Um buraco negro de origem estelar com massa tão elevada (e formado em uma data relativamente recente) ainda não teve tanto tempo de acretar toda a matéria de que precisaria para engordar de forma considerável. Isso significa que boa parte de sua massa veio da estrela que lhe deu origem.

O problema disso é o seguinte: os modelos de evolução estelar utilizados atualmente indicam que as estrelas perdem uma quantidade razoável de massa ao longo da vida graças aos ventos solares – aqueles fluxos de material que suas camadas mais superficiais expelem em direção ao espaço aberto. Essa perda significa, em princípio, que o buraco negro não deveria ter matéria-prima suficiente para se formar já com um tamanho peso-pesado.

Continua após a publicidade

“A ideia, então, é modelar melhor, matematicamente, a evolução das estrelas que conduzem a buracos negros”, diz Juliano Neves. E, desta forma, explicar como Cygnus X-1 se tornou tão grande.

 

 

Publicidade

Matéria exclusiva para assinantes. Faça seu login

Este usuário não possui direito de acesso neste conteúdo. Para mudar de conta, faça seu login

Oferta dia dos Pais

Receba a Revista impressa em casa todo mês pelo mesmo valor da assinatura digital. E ainda tenha acesso digital completo aos sites e apps de todas as marcas Abril.

OFERTA
DIA DOS PAIS

Impressa + Digital
Impressa + Digital

Receba Super impressa e tenha acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*

a partir de 9,90/mês

Digital Completo
Digital Completo

Acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*

a partir de 9,90/mês

ou

*Acesso ilimitado ao site e edições digitais de todos os títulos Abril, ao acervo completo de Veja e Quatro Rodas e todas as edições dos últimos 7 anos de Claudia, Superinteressante, VC S/A, Você RH e Veja Saúde, incluindo edições especiais e históricas no app.
*Pagamento único anual de R$118,80, equivalente a 9,90/mês.

PARABÉNS! Você já pode ler essa matéria grátis.
Fechar

Não vá embora sem ler essa matéria!
Assista um anúncio e leia grátis
CLIQUE AQUI.