Relâmpago: Revista em casa a partir de 9,90

Uma vela e uma bola para explicar as cônicas

Artigo do professor Luiz Barco, explicando o que são e como se reconhecem as cônicas.

Por Da Redação Materia seguir SEGUIR Materia seguir SEGUINDO
Atualizado em 31 out 2016, 18h46 - Publicado em 31 mar 1991, 22h00

Luiz Barco

Num sábado ensolarado do final de janeiro encontrei-me casualmente como um ex-aluno, hoje jornalista. Para a minha surpresa, em vez de fazer comentários sobre a guerra no Golfo Pérsico, ele me confessou que sempre quis saber o que eram e como se reconheciam as cônicas, ou seja, as parábolas, elipses etc. Ciente de que meu interlocutor queria uma informação e não um rosário de fórmulas e aborrecidas explicações, lhe sugeri uma experiência, usando uma vela e uma bola. Imagine uma vela de comprimento superior ao diâmetro de uma bola. A sombra que a luz da vela, incidindo sobre a bola, projeta na mesa é a de uma elipse.

Embora, muitas vezes, você tenha tido dificuldades para construir uma elipse nas aulas de desenho geométrico, o mesmo não acontece com um jardineiro quando quer fazer um canteiro de contorno elíptico. Ele apanha duas estacas de madeira e as finca a uma determinada distância uma da outra. A seguir, amarra nas estacas as duas pontas de uma corda cujo comprimento é maior do que a distância entre as estacas. Depois, estica a corda com um ponteiro e marca no chão esse contorno.

Observe que o risco é o lugar de todos os pontos que têm a propriedade seguinte: a soma das distâncias de cada ponto até os pés das duas estacas ( focos) é constante e igual ao tamanho da corda.

A experiência pode ser repetida com uma tábua, dois pregos, barbante e um lápis. A ponta do lápis pode ser considerada um planeta, como a Terra, por exemplo. O Sol estará em um dos pregos ( focos ), e a elipse traçada é a órbita do planeta considerado.

Continua após a publicidade

Voltando à vela e à bola, quando a altura da vela dor igual ao diâmetro da esfera (bola), vamos obter uma sombra parabólica, isto é, a curva que contorna a sombra é uma parábola.

Observe que o centro da curva e um de seus focos foram atirados para o infinito.

Imagine, então, que, enquanto conversávamos, a vela queimou, ficando menor que o diâmetro da esfera. Teoricamente vamos ter uma sombra, cujo o contorno é uma curva chamada hipérbole.

Continua após a publicidade

Observe que nas condições dadas somente poderíamos obter uma sombra circular se o tamanho da vela fosse teoricamente infinito. Na prática, bastaria que ele fosse assustadoramente grande em relação às outras medidas. É por essa razão que, nas aplicações práticas, consideramos que os raios do Sol chegam à Terra paralelos. O Sol é a chama de uma vela praticamente infinita. Essas curvas – elipses, circunferências, parábolas e hipérboles – são denominadas seções cônicas, ou apenas cônicas, pois as obtemos secionando, por meio de um plano, dois cones que se opõem pelo vértice (figura conhecida por cone de duas folhas).

A inclinação do plano secionado em relação ao eixo central é o que determina o tipo de cônica obtido. Quem primeiro estudou essas curvas foi o geômetra grego Apolônio de Perga no século III a.C. Daí resultaram oito livros, considerados o coroamento de toda a Geometria grega. Depois disso, só no século XVII, quando o astrônomo alemão Johannes Kepler (1571- 1630) enunciou suas leis sobre os movimentos dos planetas, os homens voltaram sua atenção para as c��nicas.

Publicidade


Matéria exclusiva para assinantes. Faça seu login

Este usuário não possui direito de acesso neste conteúdo. Para mudar de conta, faça seu login

Digital Completo

Acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*
Apenas 5,99/mês
DIA DAS MÃES

Revista em Casa + Digital Completo

Receba Super impressa e tenha acesso ilimitado ao site, edições digitais e acervo de todos os títulos Abril nos apps*
A partir de 10,99/mês

*Acesso ilimitado ao site e edições digitais de todos os títulos Abril, ao acervo completo de Veja e Quatro Rodas e todas as edições dos últimos 7 anos de Claudia, Superinteressante, VC S/A, Você RH e Veja Saúde, incluindo edições especiais e históricas no app.
Pagamento único anual de R$71,88, equivalente a R$ 5,99/mês.

PARABÉNS! Você já pode ler essa matéria grátis.
Fechar

Não vá embora sem ler essa matéria!
Assista um anúncio e leia grátis
CLIQUE AQUI.